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In order to describe the dynamics of thed model, two different families of first-order
Lagrangians in terms of the generators of the Hubbard algebra are found. Such families
correspond to different dynamical second-class constrained systems. The quantization
is carried out by using the path-integral formalism. In this context the introduction
of proper ghost fields is needed to render the model renormalizable. In each case the
standard Feynman diagrammatics is obtained and the renormalized physical quantities
are computed and analyzed. In the first case a nonperturbativeNaeggansion is
considered with the purpose of studying the generalized Hubbard model desétibing
fold-degenerate correlated bands. In this case fie dorrection to the renormalized
boson propagator is computed. In the second case the perturbative Lagrangian formalism
is developed and it is shown how propagators and vertices can be renormalized to each
order. In particular, the renormalized ferromagnetic magnon propagator coming from
our formalism is studied in details. As an example the thermal softening of the magnon
frequency is computed. The antiferromagnetic case is also analyzed, and the results are
confronted with previous one obtained by means of the spin-polaron theories.
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1. INTRODUCTION

As is known thet—J model is at present one of the better candidates for ex-
plaining the phenomenology of High-superconductivity, and it contains the main
physics of doped holes on an antiferromagnetic background (Izyumov, 1997). The
t—Imodel is usually studied in the framework of the slave-particle representations
(Guillou and Ragoucy, 1995). Two of them, the slave-boson and the slave-fermion,
are the most important and were intensively used. The first one favors the fermion
dynamics, and therefore the slave-boson representation seems to be better for
describing a Fermi liquid state (Baskaranal., 1987; Kotliar and Liu, 1988a).
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Instead, the slave-fermion representation seems to give a good response when the
system is closed to the antiferromagnetic order (Jayapradtaah 1989; Kane
et al, 1990).

Many problems concerning the superconductivity of strongly correlated sys-
tems were treated within the context of the generalized Hubbard model by using
the decoupled slave-boson representation (Grilli and Kotliar, 1990; Kotliar and
Liu, 1988b; Tandort al., 1999). From the discovery of unconventional supercon-
ductivity in the rare-earth-based copper oxides and in heavy-fermion materials,
interesting theoretical progresses were done in this direction. In Grilli and Kotliar
(1990), Kotliar and Liu (1988b), and Tandet al. (1999), the generalized Hub-
bard model describindl-fold-degenerate correlated bands in the infititdimit
by means of the larg® expansion was studied. Using the slave-boson technique,
Fermi-liquid properties of strongly correlated systems were evaluated. Moreover, it
was shown that the leading lll corrections gives rise to different superconducting
instabilities depending on the band structure and the filling factor.

As is known the slave-particle models exhibit a local gauge invariance which
is destroyed in the mean field approximation. This local gauge invariance has
associated a first-class constraint which is difficult to handle in the path-integral
formalism.

Since the Hubbard operator representation is quite natural to treat the elec-
tronic correlation effects (Izyumov, 1997), we have developed a Lagrangian for-
malism in which the field variables are directly the Hubb&rdperators (Foussats
etal, 1999, 2000). In this approach the Hubba?mbperators representing the real
physical excitations are treated as indivisible objects and any decoupling scheme
is used.

In the t—=J model in which spin and charge degrees of freedom are present,
the Hubbar(jf(-operators verifies the graded algebra spl(2,1) given by

[Xe#, X1%], = 8ij (877 X £ 8% XIP). (1.1)

where the indices, 8, y, § run in the values+, —, and 0. In Eq. (1.1), the- sign
must be used when both operators are fermion-like, otherwise it corresponds the
sign, and, j denote the site indices.

In order to describe the dynamics of ke model the purpose is to find the
family of first-order Lagrangians written in terms of fermion-like and boson-like
HubbardX-operators. The family of Lagrangians and the constraint structure of
the model are determined by using the Faddeev—Jackiw (FJ) symplectic method
(Faddeev and Jackiw, 1988).

The different family of Lagrangians written in terms of field variables which
verify the graded commutation rules (1.1), corresponds to different initial condi-
tions imposed on the differential equation system produced when the FJ symplectic
method is implemented. Moreover, the set of constraints is also provided by the
symplectic formalism and it is second-class one (Foustatk, 1999, 2000).
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We have found two kind of solutions of physical interest. As shown in Foussats
et al.(2000), in the context of the path-integral formalism, the different family of
constrained Lagrangians can be mapped into the two slave-particle representations
mentioned above. In particular, the family totally constrained in the boson-like
Hubbard X-operators can be mapped into the slave-boson representation and it
is precisely that suitable for describing Fermi-liquid properties of strongly corre-
lated systems. The other family we have found is mapped into the slave-fermion
representation (Wiegmann, 1988, 1989).

In this paper, by means of the path-integral technique, the correlation gen-
erating functional corresponding to each family is written in terms of a suitable
effective Lagrangian. Later on, we study an interesting open problem from the
quantum-field theory point of view as well as from the condensed matter models
(Colemaret al,, 2001). This is the quantization of titeJ model by constructing
the standard Feynman diagrammatics in terms of the Hub¥arderators.

The paper is organized as follows. In Section 2, the starting point is the
correlation generating functional we have found in Foussiés. (2000) for the
family of Lagrangian that can be mapped into the slave-boson representation. In
this case the nonperturbative formalism for the generalized Hubbard model is an-
alyzed. This is done by means of the lafgeexpansion in the infinité&} limit.

In Section 3, by defining proper propagators and vertices, the standard Feynman
diagrammtics of the model is given. In Section 4, the boson self-energy and the
renormalized boson propagator are explicitly computed. From the renormalized
guantities several physical properties can be evaluated and the results confronted
with others previously obtained. In Section 5, we consider the correlation generat-
ing functional (Foussast al., 1999) arising from the other family of Lagrangians
that can be mapped into the slave-fermion representation. Also in this case, and by
means of the perturbative formalism coming from our nonpolynomial Lagrangian,
the Feynman rules, and diagrammatics are found; this is done in Section 6 for the
ferromagnetic configuration. Our model is checked by computing the thermal soft-
ening of the magnon energy effect. The results are contrasted with those obtained
in the framework of nonlinear spin wave model. In Section 7, the antiferromagnetic
configuration is studied and the results predicted by the model are contrasted with
others previously obtained by means of the spin-polaron theories.

2. LAGRANGIAN FORMALISM FOR THE GENERALIZED
HUBBARD MODEL

In this section, we study the solution corresponding to the Lagrangian that can
be mapped into the slave-boson representation. The starting point is to consider
the following first-order Lagrangian (Foussatsl., 1999) written in terms of the
HubbardX-operators

L = ags(X)X* —VvO(X). (2.1)
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In the FJ language, the symplectic potertid is defined by
VO = H(X) + 13Qa, (2.2)

whereA? are appropriate Lagrange multipliers for the constraings
In the Eq. (2.2)H (X) is the usuat—J Hamiltonian where a term depending
on the chemical potential was added

H(X) =)ty X7OXY + = ZJ|J(X+_X T XX =) X0 (23)

i,j,0 i,o
InEq. (2.3)i; andJ; are respectlvely the hopping and the effective exchange

parameters between siieand| . The indicesy, 8 take the values 0+, and-, and

the indexo takes the values and—. The five HubbarcK-operatorsx®®” and X

are boson-like and the four Hubbaxdoperatorsx°® and X% are fermion-like.
Once the FJ symplectic algorithm is implemented on the first-order

Lagrangian (2.1) (Faddeev and Jackiw, 1988), a particular solution of the dif-

ferential equations bring the following values for the coefficiemis and the

constraints2,

a0 _ Oc
aiOo- 2X00X ’ aiaO - yloox| ’ (24)
Q00 = X004 X+ 4+ X7~ —1=0, (2.5a)
, ;o XOOXO
Q" = X7 - =G =0. (2.5b)
|

The boson-like Lagrangian coefficients are all zero. The set of constraints
(2.5) are second-class one.
Consequently the dynamics in this condition is given by the Lagrangian

L(X, X) = —

00 2 (X7 X7+ X7OX) — HOX). (2.6)

This solution corresponds to the configuration in which the bosons are totally
constrained and the dynamics is carried out only by the fermions. The partition
function corresponding to this solution reads

(700(7

Z= /Dx?ﬁa[xf’% X4+ X7 1] 8 [xw x00

] (sdet/\/lAB).

xexp(i /dt L(X, X)), 2.7)
where
(sdetMag)? = (X)?. (2.8)
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As shown in Foussatst al. (2000), the correlation generating functional
(2.7) can be mapped into the slave-boson representation, and therefore we con-
sider (2.7) suitable for describing Fermi-liquid properties of strongly correlated
systems.

Looking at the path-integral (2.7), the four bosonic constraints (2.5b) can
be explicitly used by integrating out the delta functions. Once the transformation
to the Euclidean space is done, after some algebraic manipulations the effective
Lagrangian can be defined and it reads

L&n(X, X) = ZZ xoo (XD X704 XPOXP7) + D (6 — iy X7OX(”

ij,o

J'J 0y 0— yv—0y/0+ 0y 0— v —0y/0+
+3 Zxooxoo (XPXTXTEXT + XX XEXT)

+ in (x° - - 1), (2.9)

wherep = X0 X+0 4 X0~ X0,

As it is usual in field theory for deriving Feynman rules, the exponentiation
of the superdeterminant of the symplectic supermatiug appearing in the
path-integral (2.7) is carried out by introducing appropriate ghost superfields.

The 6x 6 dimensional symplectic supermatii 4 takes the form

0 L+ by 3pop spoy ooy %o)f P
Mapg = _%% —§—§§ _ﬁ 0 0 0 )
iFr & o 0 %
S M 0 & O
(2.10)
and the superdeterminant writes
(sdetMap)? = (detA): (2.11)

[det(D — CA-1B)]z

In the slave-boson representation for the generalized Hubbard model describ-
ing N-fold-degenerate correlated bands (Grilli and Kotliar, 1990; Kotliar and Liu,
1988; Tandoret al,, 1999), the nonperturbative largé-expansion technique is
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used systematically. On the other hand, also the |&tgexpansion was used in
functional theories written in terms of thé-operators (Baym and Kadanoff, 1961;
Greco and Zeyher, 1996; Zeyher and Greco, 1998; Zeyher and,Ki996). As
known, in the order AN the method gives different results for superconductivity
(Greco and Zeyher, 1996; Zeyher and Greco, 1998).

From our Lagrangian model used in the framework of the path-integral
formalism a new nonperturbative largé-expansion is proposed (Foussats and
Zandron, 2001), in order to compute renormalized physical quantities to leading
order in Y N. To describe the generalized Hubbard model by means of the path-
integral formulation, the Eq. (2.7) must be firstly arranged in such way that the
N = 2 case is strictly equivalent to thé = co one-band Hubbard model. We
begin by relaxing the single-occupancy constraint so that a systematic loop expan-
sion in terms of IN can be performed. Therefore, we assume that the iadex
can takep values by running from 1 t&N, whereN is the number of electronic
degrees of freedom per site, angiNL can be considered as a small parameter.
The symplectic supermatriMag gets (24 2N) x (2 + 2N) dimension; where
the Bose—Bose parts has 2x 2 dimension; the Bose—Fermi paBshas 2x 2N
dimension; the Fermi—Bose paftshas 2\ x 2 dimension and the Fermi—Fermi
partsD has 2N x 2N dimension.

Consequently, the boson fields in terms of statics mean-field and dynamics
fluctuations are written

X% = Nro(1+8R), (2.12a)
A = Ao+ 2. (2.12b)

Moreover the following change of variables is carried out

1
fr—_—_xM 2.13a
ip /—Nl’o i ( )

1 0
fip = XP. 2.13b
P JNrg ( )

The Egs. (2.13) show that the proportionality between the fermion figld
and the fermion-like HubbarQKiOp-operators is maintained for all orders in the
largeN expansion.

Therefore, in the new variables the constraint (2.5a) takes the form

=i N
Miphie N -0, (2.14)

Nr0(1+8R|)+Z T13R) 2

where forN = 2 the expression (2.5a) is recovered.
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The symplectic supermatri¥f g reads

0 N s To 1o 1o
0~ Zp @13R? 2 @1R)? 2 (T+oR?
Nr £+, 0 f, f
( 0~ Zp(1+6R)2) T1HR 1+5R
Mas = _1 fy o 0 __ 1
2 (1+5R)2 1+5R 1+sROPP
1 Ty fo 1
_1__ v - 1
2 (1+5R)2 1+5R l+6R8W 0
(2.15)

The total generalized Euclidean Lagrangian is given by

LE = L + Lghoss (2.16)
where the effective Lagrangian is

eff__ Z(flpf|g+f+flp)< >+rozt|] flp pr

L1,p

—(n— Ao)Zf (1+8R)+Nr025xim
1
+Z ( m)at + on Z Ji[l— (R +8R))]

L p

The next step isto Write the Lagrangilgnostobtained from the exponenti-
ation of the superdeterminant of the symplectic supermaitixs. Using the Eq.
(2.11) the (sdetM ag)? is written

Nro
—1 \N~

(1+6R)
When the integral representation for (sdeftag)? is used, the numerator of
(2.18) is written as a path-integral over Grassmann numbers (or ghost fields)

B
exp(—[ dr QTNr09>, (2.19)
0

and the denominator of (2.18) can be seen & @& N diagonal matrix whose
integral representation is given by using complex boson ghost figjds

exp[ /drzT(HER)zp] (2.20)

(sdetMpp)? = (2.18)
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From (2.19) the Gaussian integral is performed and its value contributes to
the path-integral normalization factor. So, thghost field does not appear in the
formalism.

Consequently, the Lagrangian for the ghost fiefgisis given by

Lonos(Z) = — > _ 2} <1+16R) Z. (2.21)
p

From equation (2.11) and the expression (2.15), the alternative way is to
consider the integral representation of the superdeterminant of the symplectic
supermatrixM ag in terms of the boson—bosonx22 dimensional part#\ and
the fermion—fermion B x 2N dimensional partsiy — C A"1B). In this case the
integral representation gives rise to the following Lagrangian for the ghost fields

Lghos(e) + Lghos(z)

1 fpr’

IR I S
11sR) | 777 AR
(1+4R) (Nro — Sz ) (1 + 8RY?

Zy (2.22)

It is easy to show that the above two expressions for the ghost Lagrangians,
(Egs. (2.21) and (2.22)), yield the same results. For simplicity, the diagrammatics
is constructed by considering the Eq. (2.21) for the ghost Lagrangian.

In summary, to take into account all the terms of ordéM 1lin Eq. (2.17) itis
sufficient to retain term up to ordéR?. Therefore, the total LagrangiarF writes

N

1 N
L= =2 (fipfig + Fis fip)(1 = SR +8RY) + 10 )t if Fip
i,p P

— (u—ko)z fia fip(1 = 8R +8R?) + Nro ) 64 8R

Zf+f.p — SR +8R|)8kl+m > K- (R +68Ry)]

iLj,p.p

< (£ fip 5t fip + B0 fip fip £,5]1 = Y ZH(1 -8R +8R%) 2,. (2.23)
P

In the next section the Feynman rules and diagrammatics arising from the
Lagrangian (2.23) in the infinite (J; = 0) limit are constructed.
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3. FEYNMAN RULES AND DIAGRAMMATICS

The Feynman rules can be obtained as usual. Looking at the Lagrangian
(2.23), the bilinear parts give rise to the field propagators and the remaining pieces
are represented by vertices. We assume the equations written in the momentum
space, and so once the Fourier transformation are performed the Feynman rule
propagators and vertices can be written:

(i) Propagators:
We associate with the two-component boson 8@ = (SR, §1),
the propagator

0 W
Djan(@, wn) = | ° (3.1)

N O

that is represented by a dotted and dashed line connecting two generic
points a and b:

The quantities) andwy, are the momentum and the Matsubara fre-
guency of the bosonic field, respectively.

We associate with th&l-components fermion field,, the propa-
gator

Spp
e (32)

that is represented by a line connecting two generic points p‘and p

—

wheree, = —rot ), exp(—il.k); andl is the lattice vector.

The quantitiek andv, are the momentum and the Matsubara fre-
quency of the fermionic field, respectively.

We associate with thid-components ghost field,, the propagator

that is represented by a dotted line connecting two generic points p
and p:
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(ii) Vertices:
The expressions for the three-leg and four-leg different vertices are
respectively

AP = (-1) <i§(v +v) 4+ u; 1> 8PP, (3.4)
i Ny 1

ABE = (—1)( 2+ -w 2) . (35)
-1 0

I3y = (~1)@pp, 0) (3.6)

rggz(—1)<_é 8>3pp. 3.7)

4. BOSON SELF-ENERGY AND RENORMALIZED
BOSON PROPAGATOR

We begin by showing how the ghost fields take part in the formalism in order
to produce the cancellation of infinities in the boson self-energy. So, in order to
compute the AN correction to the boson propagator, the structure of the model is
examined up to one loop. By looking at the diagrammatics it can be seen that the
boson self-energy¥l,y, is given by the sum of contributions corresponding to the
following one-loop diagrams

Man(o, 9) = (@, @) + TQ(@, @) + T, q) + T (0, q),  (4.1)
where

1
Mp.a)=— > AL

4 4

PGPP (v, AL PGP P (v — w, k — q),

S vk pp,p"p”
(4.2a)
1
N, q) = -2 APPGPP (K, v), (4.2b)
K,v,p, P’

®) _ 1 P’ p pp
MRRl@,q) = = Z I'r "Dpp'r" Dprpr
S k’U’p‘ p/’p//’pm

ZEXK:ZZ(;)Z(%):N%ZL (4.2¢)

S v

1 N -1 N
iR, q) = 20 > IE%Dpy = 2N > (-2 (7> =23 Sou
kv, p, p’ v s
(4.2d)
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The other two componentRR{) and @A) of 1'[(3) and l'I( are vanishing
ones. Moreover, Egs. (4.2¢,d) shows that the self- eneRgg) (:omponent of both
self-energy parts has infinite value.

On the other hand, it is easy to show that the componddi) 6f the self-
energy parts given in (4.2a,b) have a finite part, plus infinities that are respectively
cancelled with the infinities arising from the self-energy Egs. (4.2c,d). In this way
renormalized components for the boson self-energy can be obtained

ME™a, o) = TE@, 0n) + TE (G, wn), (4.3)
where
1N
.00 =~ . 2 | (e = 1) — &)
s X
2[NE (kg — 1) — Ne(ex — ]
, 4.4
+ e +a T (4.42)
’ k+q —j wn + 8k+q — ek ’ .

R q, wn) = _2N1 Z [nF(eictq — 1) — Nele — W] (4.40)

—iwn + exq — &k

Fromthe Eqs. (4.4) itcan be seen thatthe components of the boson self-energy
vanish forq = 0.

At this stage using the Dyson equatioBs6) 1 = (D(yap) "+ — " the
dressed components of the matricial boson propagator can be found. So, the renor-
malized components are given by

I1
DEMq, wn) = 2 (4.5a)
Nrp)?2 n MgrM;y 1’
(Nro) [ 2N)\rR + (Nr0)2 - (rFiJF:O)é ]
HRR
DR (q, wy) = , (4.5b)
Nrg)2 I, MMRrRIT
(Nro) [1-2§%2 + (Nro)2 — ]
(Ren)(q = 1 Mg — Nfo (4.50)
' (N rO)Z [1 ZHAR + _ URRHAA]' '
Nro (Nfo)2 (Nro)?

From the Egs. (4.5) it can be seen that the componlﬁi{% (g, wn) and
(Re”)(q wn) have a non-correct physical ultraviolet behavior, because they are
constant whermw, — oo [see for instance Baskarat al. (1987)]. As is known
the problem originates because the path-integral must be evaluated really on a
discretized imaginary time. When in the path-integral the continuum limit in
is taken carefully (Arrigonet al,, 1994), the exponentials regularization factors
appeatr, and so these unphysical singularities can be appropriately eliminated.
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The renormalized boson propagator we found is the suitable one that permits
us to evaluate, for instance, thgN correction to the fermion self-energy. In our
model the fermion self-energyis given by the sum of contributions corresponding
to the following two one-loop diagrams

» =304 0 (4.6)
where
0 == Z APPD(q, w)AL PGP P (v +w, k+ Q)
Ns g0 pp
i
= _NL |: “(2v+wn)+u-— ko) D(ﬁ,‘)?(q,wn)—l—Z(E(Zv—i—wn)
AR A 1
+u— ko) Dv)(@, @n) + Dy (@, wn)] (0T o) = Aeg (4.7)
and

%@ = Ns ZAEED(V)(Q o)

1900
N g,

- 2
|:<|§(2V +on)+ @ — )\O) D(s/ (9, n) + D(v)(Qu wn):| (4.8)

Consequently, the fermion self-energyreads

1%p i i RR
Y= TN E(ZV‘Fwn)"‘M —Ewn‘f‘AkJrq‘f‘M Dy (@, @n)
S q,0

(v + Aisa + 201 — 20)DAE(A @) + DRy (@ wn)}

1

X 0T o) = Arerg (4.9)

where
Akiq = Ektq — M + Ao. (4.10)

From Eq. (4.9) the AN correction to the fermion self-energy can be computed
[see for instance Tandaet al. (1999)].

Finally we remark that the diagrammatics given above was checked by com-
puting numerically the charge—charge and spin—spin correlation functions on the
square lattice for nearest-neighbor hopgiigoussats and Greco, submitted). The
results are in agreement with previous ones arising from the slave-boson model as
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well as from the functionaK-operators canonical approach (Gehlhoff and Zeyher,
1965; Wang, 1992).

5. PERTURBATIVE LAGRANGIAN FORMALISM
FOR FERROMAGNETIC AND
ANTIFERROMAGNETIC CONFIGURATIONS

As was commented above, the other family of Lagrangians that can be mapped
into the slave-fermion representation is useful when the system is closed to a
ferromagnetic or an antiferromagnetic configuration. In this case, starting from
a nonpolynomial Lagrangian, a perturbative formalism can be developed in the
framework of the path-integral.

In this case, the particular solution for the coefficients of the Lagrangian (2.1)
leads to the following Euclidean Lagrangian

LE_ i Z S1S2 — S2Si1

= Wi, UF 4+ Hyg, 5.1
2S S+ 33 + %: 1 lo + t—J ( )

and the set of second-class constraints

Q=S+S$+£-s2=0, (5.2a)
E1=VU'(S+iS)—Vi(s+S) =0, (5.2b)
=W (S —iS) — W, (s+S) = 0. (5.2¢)

We note that Egs. (5.1) and (5.2) are written in a new set of variables [see
Foussatt al. (1999)].

The correlation-generating function is obtained integrating the fermionic con-
straints (5.2b,c) and by using the integral representation for the delta function on
the nonlinear bosonic constraints (5.2a). Therefore, the partition function writes

= / DS1DS,DS3 DY _ D\Ifi*_ DA (SdetMAB)i%

X exp(— /Oﬂ dr LE«(S, \If)), (5.3)

whereLE((S, W) is defined by

Lex(S W) = —é(l )Z stsl_’_ 35132 Z)‘i (Fi+ 5 +55-5)

_sZ +1S (W Wi + W w* )+ H(S W). (5.4)
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The first term in Eq. (5.4) shows the nonpolynomial structure of the kinetic
part of the Lagrangian.
In Eq. (5.4) the total Hamiltoniahl is defined by

1
H = H; —ZSMZS
i,o

[\ 5.5
+Ss ' (52)

where the Hamiltoniam;_; for thet—J model is given by
S1— iSz) (Sjl + iSj2>]
Hi_y = ti W \IJ*
- Z'J . [ <S+33 S+ Si3

- @ Z Ji(1— )L - p)IS1S1+ S2S2+ S3S3 — 5%, (5.6)
ihj

whereJ;; > 0 for a ferromagnetic state arj < 0 for an antiferromagnetic one.
The simplectic supermatrii ag writes

0  -wy zear S 0
s 0 —s 25 0
Mas=| z(sl(gf)ss%)z z(sl(;f)szlz 0 —25 (s+sg)2q’* ' (s+sg)2 v
25, 25 25 0 0 0
0 (S+%)2q;* 0 0 — si—ssg,
0 —igep¥- O -i %5 0
(5.7)

From now on the system fluctuating around a ferromagnetic sthte> (
0) or an antiferromagnetic statg(< 0) is assumed. In such conditions, the
components of the real vector fieRlare close to be the spin variables, and so in
both cases the vect&is written

$=(0,08)+(5 % ) (5.8)

where§,, S,, & are the fluctuations. To simplify notation hereafter the tilde over
the fluctuations is omitted.

To derive Feynman rules, the next step involves the rewriting of the superde-
terminant of the symplectic supermatriX og appearing in the partition function
Eqg. (5.3) as a path-integral over Faddeev—Popov ghost superfig|ds; ) (« =
1,2,3,4,j =1, 2), such that

detA
detD’

whereA is the Bose—Bose parts aidis the Fermi—Fermi parts of the symplectic
supermatrixM ag.

(sdetMag) = (5.9)
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From Eq. (5.7) it seems tha& is a real antisymmetric 4 4 dimensional
matrix. By namingl4(A) = 4(detA)Y2 it can be written

B
u:/pea exp(—/ dr QTA9>, (5.10)
0

whered, are four real Grassmann numbers or ghost fields.
Analogously, the (deD)~/2 of the 2x 2 dimensional matriD is written

B
(detD)‘1/2=/DZ*DZexp<—/ dr z*Cz), (5.11)
0

whereZ = 21 4+ i 2,, Z* = Z; — i Z, are complex scalar fields, ari@l= 542r—533
(iC = —Djy2= —D2j).
Therefore the Lagrangiangnoes:for the ghost field$, and Z is given by

Lghost= 0" A0 + Z*CZ, (5.12)
and the total Lagrangian writes
L =L + Lgnost (5.13)

Once the effective Lagrangian (5.4) and the matrix elements of the two ma-
trices A and D are written in terms of the fluctuations (5.8) the total Lagrangian
(5.13) is ready to construct the diagrammatics in a perturbative way.

6. DIAGRAMMATICS AND FEYNMAN
RULES—FERROMAGNETIC CONFIGURATION

In this section, we begin by analysing the ferromagnetic case>(0). The
effective Lagrangian (5.4) in terms of the fluctuations (5.8) reads

i s slssz+jzsl [1+Z< 1y (S+S,> }

-2 T[T ()
. :Tg Zw’%_ [1*‘2( 1y <S+S/> } +;tij\yi_w ~
+ﬁ;t” Wi W [S1S1+ S2S2+1(S152 — S251)]

nem n 83 m
x 2 <s+s’> (sis’) 852J Z F18

n,m=0
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+S2Si+1y2 + S3Si+is — S5 — -2s Z)» S3
- Zki [+ S5+ S5, (6.1)

where in Eq. (6.1)' = J(1 — p)?, and)_, indicates sum over nearest-neighbor
sites.
Analogously, the Lagrangian for the ghost fields takes the form

1
LghOSl(eou Z) = et;r(gaﬂ)_leﬂ + 9; Fgﬁvagﬁ + - Z QT

Tef o V& .- Vg,

* - 1 *
+Z24G) 2 + o ;z Aga VB V@ Z, (6.2)

From the Egs. (6.1) and (6.2) propagators and vertices can be defined
(i) Propagators:

We associate with the four-component boson fiéll= (S, S
S, 1), the 4x 4 matricial propagator

D(aol;(q1 a)n)

s(s+ S)(l+p)w2+w2 S(s+9) w2(1+'0) 0 0
—s(s+s )wé“j:w2 1+p) sS(s+s )(1 +p) L, w2+wz 0 0
0 0 0 - ’
1 (1=p)o
0 0 T2 45’25(/?s,+g’)

(6.3)
that is represented by a dotted and dashed line connecting two generic
points a and b:

a

—

The quantitiey and wy, are respectively the momentum and the
Matsubara frequency of the bosonic field

In Eq. (6.3)

!

wg = 5o (5+8)(1+ )L~ ya), (6.4)

wherezis the number of first nearest-neighbor siteg; = >, exp(q.l)
and| is the lattice vector.
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From the bosonic propagator (6.3) it is easy to obtain the free fer-
romagnetic magnon propagati)g}))+ which is defined by

— 1 .
D = (T(5 ()S'(0) = 5(05 + 0 +1(0%5 - )

1

q n
We associate with the fermion fiell_ the scalar propagator
s+s 1
25 ivg+(sx — )’
that is represented by a line connecting two generic points:

Gk, vn) =

(6.6)

—

wherek andv, are respectively the momentum and the Matsubara fre-
quency of the fermion field, angl = —t >, exp[—ik.I].
We associate with the ghost fiedd, the propagator

1

2¢

that is represented by a dashed line connecting two generic points:

Gop = (1+ p)S(s+5) (8365 — 6285) + - (8365 — 6483),  (6.7)

We associate with the ghost complex scalar fi|dhe propagator

sS+¢
2s '

that is represented by a dotted line:

g:

(6.8)

(i) Vertices:
The expressions of the three-leg and four-leg different vertices con-
taining physical fields are respectively:
The three-leg boson verté defined by

(1-0p)

m[(wz - a)l)(5;5§ - 5553)53

Fabc(w1, w2, w3) = — [

+ (w3 — w1)(838% — 828%) 88
+ (w3 — w2) (8562 — 8585)83] + 2[ 52 (502 + 8582
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+ 8383) + 8n (8202 + 8282 + 6353) + 2 (8L88
+ 8252 + agsg)]} : (6.9)
The four-leg boson vertek,,.q defined by

l1-p

s(s+¢9)°

+ (w3 — w1)(8382 — 8382) 8553
+ (s — @1)(8385 — azad)a 82
+ (w3 — 2) (8567 — 8585)5385
(s — o) (335% - af,ad) 3363

+ (wa — w3) (8585 — 8285)8385).  (6.10)
The three-leg vertekK, (two fermions-one boson) defined by

Ka = [i (vn + vp) — 2185, (6.11)

C(s+ s/)2
The four-leg vertexXX,p, (two fermions-two bosons) defined by
1 .
Kab = | 73 (Etcra) + 0c—q)) [8a85 + 8285 +1(5385 — 6285)]
(s+9)
3

+ m[l(Vﬁ‘U)—ZM]S 8bj| (612)
The remaining vertices containing more than four bosons, as well as
two fermions and more than two bosons can be sistematically constructed.

Finally the vertices containing ghost fields are the following:
The three-leg verteks? (one-boson, two-ghos) defined by

1-—
Iy = —2(s58f — a58l) — =L (6595 — 659%), (6.13a)

2s(s+9)?
1-p
B aoB acB a B a B
o7 = 20030 = 8383) + 5 g (9195 — 8581), (6.13D)
@ o o 1-p a o
rs? = —2(5355 — 585) + m(alag’ —85587),  (6.13c)

andry’ =o.
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The three-leg vertex , (one-boson, two-ghost) defined by

2s
Ag=——"1353 6.14
a (S+S/)2 a ( )
The remaining vertices containing two ghost fields and more than
one boson can be systematically constructed.

In this way the diagrammatics is concluded and it can be used to compute
renormalized quantities such as propagators, vertices, and self-energies.

For instance, the total boson self-energy is obtained by the contributions of
six one-loop diagrams constructed with only physical boson and fermions, and
whose analytical expressions are respectively

Mg, 6) = o ZFadc(w @)D, q)Fepi(w, o)

2N s 2
X D(O():(a)/ —w,q —q), (6.15a)

N, q) = o 2 Z Fact(©) DE(O)Fuer(@) D/, ), (6.15b)
M, q) = oG 2 Z Facab(w, @) D)(@', d), (6.15¢)

M, k) = (_1)W Z KaGo(K, vn)KpGo(K — @, vy — @n), (6.15d)

nQv. k) = (- 1)2—NS Z Facb(@) DS} (@)KaGo(K, vn), (6.15¢)
Mo, K) = (- 1)— Z KabGo(K, vn), (6.15f)

whereN;s is the lattice number of sites.

By computing the expressions (6.15), it can be seen that the infinities (con-
stant divergences) appearing in these equations when the sum over the Matsubara
frequency is carried out are mutually cancelled with the infinities appearing in
the following six one-loop diagrams constructed from the ghost fields, and whose
analytical expressions are respectively

N (w, q) = (- 1)m2rﬁa(w @)Gay (@, )T (@, )G

x (0 —w,q —q), (6.16a)
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1
M@, ) = (-1)5- Y Fac(@) DO (@) dup (@', o), (6.16D)

2N, 2
Mw,0) = (D 3 1000, ) (6.160)
i, q) = Nis 3 AaGALG. (6.16d)
g
M (e, q) = 2—,{,3 ;1: Fac(®) D) (@) AdG, (6.16€)
M5 (e, q) = 2—;3 a;: A (6.16f)

It is important to remark that the divergences only appear in one-loop cal-
culations. It can be seen that in more than one-loop calculations, the diagrams
containing ghosts give finite contributions to the renormalized expressions of the
n-point functions.

Subsequently, by means of the Dyson equatiBi®),, = (D) g,,—

n{, it is possible to find the expression for the renormalized ferromagnetic
magnon propagator.

By definition, the renormalized ferromagnetic magnon propagBE‘gf is
given by

1 .

D = 5 (D + D +1 (DR — D)): (6.17)
where the renormalized boson propagator components are computed from the
Dyson equation.

With the aim to contrast some prediction of our model with others previous
well-known results obtained for instance from the nonlinear spin wave model
(Mattis, 1981), it is useful to compute the correction to the magnon engygy
renormalized spin-wave energy.

The renormalized ferromagnetic magnon propag@@gE becomes

1
—iwn — Pq(wn)1
(6.18)

— 1 11 22 H 12 21 2
Dy = 5(P + Pir +1(Pr — Dir)) = 25°(1 + P)wq

where in Eqg. (6.18)

Py(wn) = (;Sj NP) (Z Ne(wy)(@y — 0g—q) +ion Y nB(wq,)> . (6.19)
S C]’ CI’

without taking into account the constant total fermion energy.
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In Eq. (6.19), the Bose occupation numheg(w,) was introduced. Moreover,
including physical requirements in the calculation of the renormalized boson self-
energyIl,, when the sum over Matsubara frequencies is carried out, only the
single pole atog > 0 (see Eqg. (6.5)) must be taken into account.

Now, carrying out the analytic continuatiom, = » + i4, the thermal cor-
rection to the ferromagnetic magnon eneagycan be found, and is given by

Awg) = ;iino Re Py(iwn = wq +8)

_(1+p)
252Ns

> (0q — wq—q + og)Ns(wg). (6.20)
T
Therefore the renormalized magnon energy is given by

wq(T) = wq {1 - w qu,nB(wq/)} , (6.21)
.

showing clearly the thermal softening of the magnon frequency.
At this stage, it is possible to contrast this result of our model with others
well known previously obtained from the nonlinear spin wave model in the pure
bosonic case (Mattis, 1981). The finite contributions of the one loop diagrams
(6.15a,b) correspond in the scheme of the nonlinear spin wave model to the direct
and exchange contributions to nonlinear magnon Hamiltonian [see for instance
Mattis (1981)]. That is to say, mathematically corresponds to consider that the
self-energy expressions (6.15) are analytical functionsdg.
Therefore the renormalized components of the boson self-emER(y, wn)
in matricial form reads
0 1‘[(+R) 0 0
H(Fg 0 0 0

32 (q, wn) = (6.22)
(R) 0 0 My M
43 44
0 0 nf ng

From the Eq. (6.22) the remaining different from zero components of the
renormalized boson propagatbf‘,% can be evaluated.

As well known the damping effect is given by IRy. We must comment
that at this perturbative order and by working with free propagators and vertices,
the damping is zero. The damping effect appears when in the calculations the
renormalized expression for the boson propagator is used.

Analogously, by considering the fermion self-energy the renormalized ex-
pression for the fermion propagator can be constructed. It is easy to show that up
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to one-loop, the nonvanishing contributions to the fermion self-energy are given
by the diagrams whose analytical expressions are

1

=@k, v) = N > KanD (6.23a)
S q,@
1

Ok, v) = 5 > KaD@FocaD() (6.23b)
S q,0

By carrying out the summation on the Matsubara frequency, the finite expres-
sion for the fermion self-energy results

2k, v) = 2Ok, v) + =OK, v) = Ni > I+ p)ec—g + iva — ulns(wq)-
S q
(6.24)

Once more, through the Dyson equation the renormalized fermion propagator
G(k, v) can be computed and it becomes

1

(ivn — i[1— & X neleq)] + a1 — G2 ¥, vans(wq)]
(6.25)

Gk, v) =

Working in a similar way, the different vertices can be dressed and the ex-
pressions for the renormalizedpoint functions are found.

7. ANTIFERROMAGNETIC CONFIGURATION

In this section, it is assumed that we are close to an undoped regime where
the system is an antiferromagnetic insulator. Under this condition, there is a small
number of holes and it can be assumed that the hole density(p;) = constant.

The constant valug of the hole density must be determined later by consistency,
for a given value of the chemical potentjal

As is usual in the antiferromagnetics configuration a rotation of spins on the
second sublattice by 18@bout theS; axis is performed (Mattis, 1981)

Si1— Si1, S2— —Sj2, S3 = —S;3 and Vi, = ¥js, (7.1)

wheres — o implies+ — .

This canonical transformation changes the antiferromagnetic configuration
into a ferromagnetic one with all spins up, and so it is not necessary to distin-
guish between sublattices. It can be seen that the effective Lagrangian (5.4) is
not invariant under such transformation, because of the noninvariance tefthe
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Hamiltonian (5.6). Therefore in this case the effective Lagrangian in terms of the
fluctuations (5.8) takes the form

e“z_(l_ )251S;+§231 [1+Z( 1)n(s+s’>}

S

Y Zwi%ﬁ\pi*w [1+Z( 1)n<s+s’>}
21 . " )
_s+s’2i:\yi‘\y'_ [1+Z( b <s+s’)]

1
—_— t Wi —i S1+iS H.c
+2(S+S’)%: ij Xi ]_[Sl SZ‘I‘ Jl+ 12‘|‘ ]

1 * ; n "
+m;tij\yi—q"j_ |:(Sl_|32) (Z( 1) <S+S/> )
+ (S1+iSj2) (Z( 1) <S+S,> >+ H.ci|

852J Z S1Si+1 — SeSiv2 — SsSivz + S+ o + S5

_ZS/ZM%_ZM[S%‘*‘S@"‘ S (7.2)

where nowJ’ < 0.

It is easy to show that the symplectic supermattikag does not change
under the canonical rotation (7.1).

From this new effective Lagrangian the results for the antiferromagnetic case
can be obtained. The expression for the free boson propagator becomes

D(%t;(q' wn)

—%’Z(s+s)2(ilz+i‘j)(l+ p)? S(s+8)m 1+ p) 0 0
—S(s+8) 2 (14 p)  —FE+S)?TA+? 0 0
0 0 o -£ |
1 JzZ(1-yg)
0 0 T2 3252ng
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where the frequencyy, is defined by

zJ
wq = g(s +8)(1+p)/1— v (7.4)

Consequently, the antiferromagnetic free magnon propagator remains are
defined by

_ ok . 1
Dy = (D))" = (TS"(x)S () = 5(Djgj + D — i (D — D). (75)
From the Eq. (7.3) it becomes

_ J'z(s+9) . 1
Dy = —s(s+s)1+ <71+ +i )7 7.6
b =S+ (T Ak Hien ) . (76
As well known, the antiferromagnetic magnon propagﬂ@)‘, allows to

define the magnon spectral function given by
A=—— I|m Im D(O) (w+ie)

= S(s + )1+ P)[A+(@)3(@ + wq) — A_(A)8(w — wq)], (7.7)
where

1
Ap=1+- - (7.8)

l—)/q2

We note that the expression (7.7) for the antiferromagnetic magnon spectral
functionis the generalization to that given in Manousakis (1991) and Mattis (1981),
when the hole density # 0. This equation really check the validity of the free
propagator expression (7.6) obtained for finite values of the hole density.

Onthe other hand, the fermionic sector in the antiferromagnetic configuration
really differs from the ferromagnetic case and it must be carefully analyzed. As
we will see in this case the main problem is to give the mechanism for the fermion
propagation.

From the Eq. (7.2) the bilinear fermionic part reads

= > W (K, vn)Gg W_(K, vn), (7.9)
K,vn
where we have named
Gyl = ST s /(I — ). (7.10)
The inverse of this scalar function given by
Go=Sfs 1 (7.11)

2s ivg—pu
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is a (nonpropagating) function which only depends on the Matsubara frequency
vn. S0, the situation for the fermionic sector is very different from the case of the
ferromagnetic free fermion propagator given in Eq. (6.6).

From Lagrangian (7.2), the boson—fermion interaction vertex for the antifer-
romagnetic configuration can be written as
LBF = %wj(v’, K)a,..a, V¥ - - V@W_(v, k), (7.12)

int

where the vertel,,...;, for one and two bosonic legs explicitly reads

Ua= —— [(e(k) + 6(K))32 +i(e(K) — £(K)62

S+S
— S lion +vp) — 2053 } (7.13a)
Ugy — [ﬁ@k + e [5%62 + 6351] + (S_‘_Iis,)z(gk’ — a)[8285 + 6357
b olit+ ) - 25353 (7.13)

The Egs. (7.13) show that the boson—fermion interaction for the antiferro-
magnetic configuration has also a different structure with respect to the ferromag-
netic one.

At this stage, it is important to contrast Eq. (7.11) obtained from the bilinear

fermionic part, with others’ previous results given in the literature related with
the spin-polaron theories (Martinez and Horsch, 1991; Schmitt-&iak, 1988).
As in these theories our starting point was to assume an antiferromagnetic order
state, this physical assumption is directly connected with the fact that the fermionic
modes are not propagating. Therefore, the prescriptions for the propagation of the
fermionic modes must be given.

The usual way to solve the propagation of fermions is by using the Dyson
equation. As is known the Dyson theorem allows to compute the inverse of the
corrected fermion propagator in terms of the free fermion propagator and the
self-energy. Therefore the propagator

G(K, vn) =[Gy (vn) — B(k, va)] " (7.14)

can be evaluated within the self-consistent Born approximation scheme
(Martinez and Horsch, 1991; Schmitt-Riekal.,, 1988).

On the other hand, it is easy to show that in the one-loop computation of the
fermion self-energyx(k, i v,) only one contribution coming from the three-leg
vertexU, is significant. Because of the form of the free boson propagator (7.3),
the part coming from the four-leg vertélg, vanishes.
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Therefore the self—energy(k ivn) is given by

2K, ivn) = Zua D@ (@, QUp G(v + o, k+ Q)
s .q
G+ w,k+q)
= ;(f(k, )+ gk Q”;ng
x G(v + o, k+Q), (7.15)
where
J'z(1+ p)?
f(k,q) = % (& + e — 2yqexen), (7.16a)
S
_=2s(l+p), 5,
gk, q) = 1 SNe (8 — €f)- (7.16b)

By using standard techniques the following expression for the fermionic self-
energy at zero temperature is found

1+ P)tz 2
2Ns

[(Slgnyq)yk,/ 1 )’q — Yeray/ [T+ 1 ¥é) }
x2
q / 1 yq)

1
7.17
o — g — pt— Z(K+ . v — )’ (7.17)

where the relatiomy = —zty.
Now by defining

1 1—92
Ug = (M) (7.18a)

2/(1-78)

(K, ivn) =

_ 1-/@=v3)
Vg = —(Signyg) | | ———— |, (7.18b)
2,/(1-v3)

the Eq. (7.17) takes the final form

; (1+0).5 (UgYk+q +VqVk)2
S(k, =—"t - - . 7.19
(K, fvn) 2Ng Zzlvn—a)q—u—Z(k—i—q,lvn—a)q) ( )




Lagrangian for the t—J Model 1079

The expression (7.19) is useful in the strong coupling daseJ). Moreover,
in order to describe a metallic phase where the holes move coherently on the lattice,
it is necessary to solve the self-consistent equation (7.19) numerically.

Once an appropriate self-energy functiok, i v,) is obtained, the propagator
G(k, v) remains well defined, and so it is possible to compute numerically the
spectral function defined b(k, v) = —% lim._oG(k,v+ie).

It can be seen that the Eq. (7.19) is the generalization for finite values of
holes to the equivalent equation coming from the spin-polaron theories (Martinez
and Horsch, 1991; Schmitt-Rirét al, 1988). In fact this is a strong proof of the
correctness of our quantum procedure developed it-thenodel.

On the other hand, because of the interaction of three or more bosons in
the antiferromagnetic case remaining invariant with respect to the ferromagnetic
one, the expressions for timeleg boson vertices are unchanged. The same thing
happens with the diagrammatics containing ghost fields because the symplectic
supermatrix is invariant under canonical rotation, and so the ghost Lagrangian
(5.12) remains unchanged.

About the boson self-energy the situation is rather different from that given for
the ferromagnetic configuration. Also in the antiferromagnetic case it is possible
to obtain renormalized expressions for the boson self-energy by computing the
finite one-loop contributions of the different processes. Of course, all the one-loop
divergences of such diagrams are cancelled again by the ghost fields.

However, in the antiferromagnetic configuration the contributions of the three
diagrams containing one fermionic loop complicate the boson self-energy ex-
pression. In this case the associated renormalized mEtfixq, »n) takes the
form

Ny NG ng o
% ng ng o
g, -ng ng mg,
o o nf ng

MR(q, wn) = (7.20)

Again, the renormalised antiferromagnetic magnon propagator is obtained in
terms of the matrix elemeni3? (q, @n) by using the Dyson equation.

Finally, all the results obtained in the ferromagnetic configuration for the
renormalizech-point functions can be rewritten in this case by only replacing the
equation for the free propagator (6.3) with the free propagator (7.3).

In summary, from the above results it is clear that the main differences with
respect to the ferromagnetic case are essentially caused by two different situations.
On one hand by the different forms of the free boson propagators. Contrary to
the ferromagnetic case, the antiferromagnetic magnon propagator (7.6) has two
single poles. Moreover, the antiferromagnetic magnon is written in terms of the
hole densityp, then at lowest order it contains only static hole density effects.
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Consequently, when the hole densitis exactly equal to zero such magnon must
be understood as the antiferromagnetic magnon at zero doping.

Onthe other hand, in the antiferromagnetic configuration a priori the fermions
are nonpropagating particles (see Eg. (7.11)). However the prescription for prop-
agation can be given without ambiguity by means of the Dyson equation, and the
fermionic self-energ¥ (k, i vy) must be computed numerically by using Eq. (7.19).

8. CONCLUSIONS

The path-integral formalism coming from two different first-order
Lagrangians written in terms of the Hubbard operators is studied. The second-
class constrained systems can be respectively mapped into the two well-known
decoupled slave-particle representations, i.e, slave-boson and slave-fermion ones.
In this model, the Hubbar-operators used as field variables are the generators
of the graded algebra spl(2,1). These field variables allow to describe, without any
decoupling assumption, spin and charge fluctuations on the atomic lattice site. In
the framework of the path-integral formalism, the correlation generating function
describing the dynamics of theJmodel was analyzed in two different cases and
the standard Feynman diagrammatics was constructed.

Since the correlation generating functional corresponds to a second-class
constrained system, the superdeterminant of the symplectic supermatrix is field-
dependent and the exponentiation of such superdeterminant is realized as usual by
introducing Faddeev—Popov superghost fields in the effective Lagrangian.

By following standard techniques it can be shown that ghost fields are needed
in order to cancel the divergences appearing in the one-loop computation of physi-
cal quantities. In this way, the boson and the fermion self-energies and the different
vertices of the model can be renormalized.

In Sections 2 and 3, the Lagrangian family that can be mapped into the slave-
boson representation was studied. In this case the nonperturbative formalism for
the generalized Hubbard model by using a new laxgexpansion in the infinité)
limit was given. After the digrammatics and the Feynman rules were constructed,
in order to compute the/N correction to the boson propagator, the structure of
the model was examined in detail up to one loop. Besides the renormalized boson
propagator, we found the suitable one that permits us to evaluate/ Medr-
rection to the fermion self-energy. The diagrammatics was checked by computing
numerically the charge—charge and spin—spin correlation functions on the square
lattice for nearest-neighbor hopping(Foussats and Greco, 2002). The results
obtained in Foussats and Greco (2002) are in agreement with previous ones arising
from the slave-boson model as well as from the functiofaperators canonical
approach.

Later on, the Lagrangian family that can be mapped in the slave-fermion
representation was also analyzed. From our diagrammatics correct expressions
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for the free boson and fermion propagators are obtained. By computing the finite
values of the self-energy it was possible to obtain the renormalized ferromagnetic
and antiferromagnetic magnon propagators.

Two remarkable features of our approach namely (a) the thermal softening
of the ferromagnetic magnon frequency and (b) the fermionic self-energy at zero
temperature in the antiferromagnetic configuration (Eq. (7.19)), are respectively
connected with well-known results coming from the nonlinear spin wave model
and the spin-polaron theories.

In particular the softening of the ferromagnetic magnon energy obtained from
our approach is the generalization for different from zero hole density of the
expression obtained by means of the nonlinear spin wave model (Mattis, 1981).

At this point it is important to remark that our model accounts for the soft-
ening effect when only one-loop computations without any vertex correction is
considered. We think this fact is important because in the framework of nonlinear
spin wave model, the softening of the magnon energy is obtained by including ver-
tex corrections. Really, the vertex corrections cancel scattering processes between
magnons in such a way that only the direct and the exchange channels must be
considered as physical processes. In our perturbative approach, the correct physical
processes are directly given to each loop order.

Moreover, other important result is that in this model the divergences appear
only inthe one-loop structure, so the quantities are renormalized to any perturbative
order.

It can be seen that in calculations at more than one loop the diagrams contain-
ing ghosts give finite contributions to the renormalized expressions of goént
functions.

In the antiferromagnetic configuration, a scalar nonpropagating function for
the fermion field was obtained. By means of the Dyson equation, the true fermion
propagator can be calculated within the self-consistent Born approximation
(Martinez and Horsch, 1991; Schmitt-Riekal., 1988). By using standard tech-
nigues, the expression for the fermion self-energy at zero temperature must be
determined, and the fermionic propagation mechanism in the antiferromagnetic
configuration is given. It can be seen that the result is the generalization for finite
values of hole density to that coming from the spin-polaron theories (Martinez and
Horsch, 1991; Schmitt-Rin&t al,, 1988).
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